Gong Qingfeng | Statistics

statistics

  • material based on probability and statistics cookbook by matthias vallentin

models

  • normative - fully interpretable + modelled
    • idealized
    • probablistic
  • ~mechanistic - somewhere in between
  • descriptive - based on reality
    • empirical

error bars

  • always write what you use
    • standard dev
    • standard error = standard dev / sqrt(n) = standard error of the mean when you’re estimating a mean
    • 95% confidence interval = 2*standard error

probability

  • mutually exclusive: $P(AB)=0$
  • independent: $P(AB) = P(A)P(B)$
    • A and B conditional independence given C: \(P(AB\vert C) = P(A\vert C) P(B\vert C)\)
  • conditional (Bayes’ thm): $P(A B) = \frac{P(AB)}{P(B)} = \frac{P(B A)P(A)}{\sum P(B A)P(A)}$

distributions

  • PMF: $f_X(x) = P(X=x)$
  • PDF: $P(a \leq X \leq b) = \int_a^b f(x) dx$

distrs

multivariate gaussians - j 13

  • 2 parameterizations ($x \in \mathbb{R}^n$)

    1. canonical parameterization: \(p(x\vert\mu, \Sigma) = \frac{1}{(2\pi )^{n/2} \vert\Sigma\vert^{1/2}} \exp\left[ -\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu) \right]\)
    2. moment parameterization: \(p(x\vert\eta, \Omega) = \text{exp}\left( a + \eta^T x - \frac{1}{2} x^T \Omega x\right)\) ~ also called information parameterization - $\Omega = \Sigma^{-1}$
      • $\eta = \Sigma^{-1} \mu$
  • joint distr - split parameters into block matrices

  • want to block diagonalize the matrix
    • Schur complement of matrix M w.r.t. H: $M/H$
    • $\mu = \begin{bmatrix} \mu_1 \ \mu_2 \end{bmatrix}$
    • $\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12}\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$
    • $p(x_1, x_2) = \underbrace{p(x_1 x_2)}{\text{conditional}}\cdot\underbrace{p(x_2)}{\text{marginal}}$
      • marginal
        • $\mu_2^m = \mu_2$
        • $\Sigma_2^m = \Sigma_{22}$
      • conditional
        • $\mu_{1 2}^c = \mu_1 + \Sigma_{12}\Sigma_{22}^{-1} (x_2 - \mu_2)$
        • $\Sigma_{1 2}^c = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$
  • mle

expectation, variance, and correlation

  • $E[X] = \int P(x)x dx$
    • $E[h(X)] \approx h(E[X])$
  • $V[X] = E[(x-\mu)^2] = E[x^2]-E[x]^2$
    • for unbiased estimate, divide by n-1
    • $V(X_1-X_2) = V(X_1) + V(X_2)$ if $X_1,X_2$ independent
    • $V(a_1X_…+a_nX_n) = \sum_{i=1}^{n}\sum_{j=1}^{n}a_ia_jcov(X_i,X_j)$
    • $V[h(X)] \approx h’(E[X])^2 V[X]$
    • standard deviation - sqrt of variance
    • standard error - error of the mean
  • $Cov[X,Y] = E[(X-\mu_X)(Y-\mu_Y)] = E[XY]-E[X]E[Y]$
    • $Cov(aX+bY,Z) = aCov(X,Z)+bCov(Y,Z)$
  • $Corr(Y,X) = \rho = \frac{Cov(Y,X)}{s_xs_y}$
    • $Corr(aX+b,cY+d) = Corr(X,Y)$ if a and c have same sign
    • $R^2 = \rho^2$
  • skewness = $E[(\frac{X-\mu}{\sigma})^3]$

inequalities

  • cauchy-schwarz: $ x \cdot y \leq   x   :   y   $
    • $E[XY]^2 \leq E[X^2] E[Y^2]$
  • triangle: $\vert \vert x + y \vert \vert \leq \vert \vert x \vert \vert + \vert \vert y \vert \vert$
  • markov’s: $P(X \geq a) \leq \frac{E[X]}{a}$
    • X is typically running time of the algorithm
    • if we don’t have E[X], can use upper bound for E[X]
  • chebyshev’s: $P(\vert X-\mu\vert \geq a) \leq \frac{Var[X]}{a^2}$
    • utilizes the variance to get a better bound
  • jensen’s: $f(E[X]) \leq E[f(X)]$ for convex f

moment-generating function

  • $M_X(t) = E(e^{tX})$
    • derivatives yield moments: $\frac{d^r}{dX^r}M_X (0) = E(X^r) $
  • sometimes $\ln[M_x(t)]$ yields $\mu$ and $V(X)$
  • $Y = aX+b \implies M_y(t) = e^{bt}M_x(at)$
  • $Y = a_1X_1+a_2X_2 \implies M_Y(t) = M_{X_1}(a_1t)M_{X_2}(a_2t)$ if $X_i$ independent
  • ordered statistics - variables $Y_i$ such that $Y_i$ is the ith smalless

statistics and sampling distributions

law of large numbers

  • equivalent statements
    • $ E(\bar{X}-\mu)^2 \to 0$ as $n \to \infty,$
    • $ P(\vert\bar{X}-\mu\vert \geq \epsilon) \to 0$ as $n \to \infty$
    • $T_o = X_1+…+X_n, E(T_o) = n\mu , V(T_o) = n\mu ^2$
  • implications
    • $E(\bar{X}) = \mu$
    • $V(\bar{X}) = \frac{\sigma_x^2}{n}$

central limit thm

  • 2 characterizations
    • random samples have a normal distr. if n is large
    • $lim_{n\to\infty}P(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\leq z)=P(Z\leq z) = \Phi(z)$
  • implications
    • $X_1..X_n$ has approximately lognormal distribution if all $P(X_i>0)$

bias and point estimation

  • point estimator $\hat{\theta}$ - statistic that predicts a parameter
    • point estimate - single number prediction
  • bias: $E(\hat{\theta}) - \theta$
    • more complex models (more nonzero parameters) have lower bias, higher variance
      • if high bias, train and test error will be very close (model isn’t complex enough)
    • after unbiased we want MVUE (minimum variance unbiased estimator)
    • need inductive inference property: must make prior assumptions in order to classify unseen instances
      • define inductive bias of a learner as the set of additional assumptions B sufficient to justify its inductive inferences as deductive inferences
    • bias types
      • preference bias = search bias - models can search entire space (e.g. NN, decision tree)
      • restriction bias = language bias - models that can’t express entire space (e.g. linear)
  • consistent: $\hat{\theta_n} \to some : value$
    • basically it converges to a number (can still be biased)
  • bias/variance trade-off
    • MSE - mean squared error - $E[(\hat{\theta}-\theta)^2]$ = $V(\hat{\theta})+[E(\hat{\theta})-\theta]^2$
      • mse
    • defs
      • bias = approximation err
      • variance = estimation err

MLE

  • MLE - maximize likelihood $L(\theta) = p(X_1,…,X_n;\theta_1,…\theta_m)$ (the agreement with a chosen distribution)
  • $\hat{\theta} = $argmax $ L(\theta)$
    • $L(\theta)=P(X_1…X_n\vert\theta)=\prod_{i=1}^n P(X_i\vert\theta)$
    • $log : L(\theta)= \ell(\theta) = \sum log P(X_i\vert\theta)$
    • to maximize, set $\frac{\partial \ell (\theta)}{\partial \theta} = 0$
  • fisher information $I(\theta)=V[\frac{\partial}{\partial\theta}ln(f[x;\theta])]$ (for n samples, multiply by n)
    • higher info $\implies$ lower estimation error

overview - J. 5

  • prob theory: given model $\theta$, infer data $X$
  • statistics: given data $X$, infer model $\theta$
  • 2 statistical schools of thought: Bayesian and frequentist
    1. Bayesian: $\overbrace{p(\theta \vert x)}^{\text{posterior}} = \frac{\overbrace{p(x\vert\theta)}^{\text{likelihood}} \overbrace{p(\theta)}^{\text{prior}}}{p(x)}$
      • assumes $\theta$ is a RV, find its distr.
      • prior probability $p(\theta)$= statistician’s uncertainty
        • posterior $p(\theta x)$ is what you don’t observe
      • $\hat{\theta}_{Bayes} = \int \theta : p(\theta \vert x) d\theta$ ~ mean of the posterior
      • $\hat{\theta}_{MAP} = \underset{\theta}{argmax} : p(\theta\vert x) = \underset{\theta}{argmax} : p(x\vert \theta) p(\theta) \\ = \underset{\theta}{argmax} : [ log : p(x\vert\theta) + log : p(\theta) ]$
        • like penalized likelihood
      • bayesians prefer whole distr. rather than parameter estimates
    2. frequentist - use estimators (ex. MLE)
      • no prior - only use priors when they correspond to objective frequencies of observing values
      • neyman / pearson
      • $\hat{\theta}{MLE} = argmax\theta : p(x\vert\theta)$
        • really likelihood is whatever we model (ex. for discriminative models would be $p(y x, \theta)$)

3 problems

  1. density estimation - given samples of X, estimate P(X)
    • ex. univariate Gaussian density estimation
      • frequentist
        • derive MLE for mean and variance
      • bayesian
        • assume distr. for $\mu$
          • ex. $p(\mu) \sim N(\mu_0, \tau^2)$
        • derive MAP for mean and variance (assuming some prior)
      • can use plate to show repeated element
    • ex. discrete, multinomial prob. distr.
      • derive MLE
        • $P(x \theta) \sim $multionomial distr.
      • derive MAP
        • want to be able to plug in posterior as prior recursively
        • this requires a Dirichlet prior to multiply the multinomial
          • Dirichlet: $p(\theta) = C(\alpha) \theta_1^{\alpha_1 - 1}\cdot \cdot \cdot \theta_M^{\alpha_M-1}$
    • ex. mixture models - $p(x\vert\theta)=\sum_k \alpha_k f_k (x\vert\theta_k)$
      • here $f_k$ represent densities (mixture components)
      • $\alpha_k$ are weights (mixing proportions)
      • can do inference on this - given x, figure out which cluster it fits into better
      • learning requires EM
      • can be used nonparametrically - mixture seive
        • however, means are allowed to vary
      • solving with random projection: project to low dim and keep track of means etc.
    • ex. nonparametric density estimation
      • ex. kernel density estimator - stacking up mass
      • each point contributes a kernel function $k(x,x_n, \lambda)$
        • $x_n$ is location, $\lambda$ is smoothing
      • $\hat{p}(x) = \frac{1}{N}\sum_n k(x,x_n,\lambda)$
      • nonparametric models sometimes called infinite-dimensional
  2. regression - want $p(y \vert x)$
    • conditional mixture model - variable z can be used to pick out regions of input space where different regression functions are used
      • $p(y_n\vert x_n,\theta) = \sum_k p(y_n\vert z_n^k = 1, x_n, \theta) \cdot p(z_n^k=1\vert x_n,\theta)$
    • nonparametric regression
      • ex. kernel regression $\hat{f}(x) = \frac{\sum_{i=1}^N k(x, x_i) \cdot y_i}{\sum_{m=1}^N k(x, x_j)}$
  3. classification
    • ex. Gaussian class-conditional densities
      • posterior probability is logistic function
    • clustering - use mixture models

model selection / averaging

  • bayesian
    • for model m, want to maximize $p(m\vert x) = \frac{p(x\vert m) p(m)}{p(x)}$
      • usually, just take $m$ that maximizes $p(m\vert x)$
      • model averaging: $p(x_{new} x) = \int dm \int d\theta : p(x_{new} \theta, m) p(\theta x, m) p(m x)$
      • otherwise integrate over $\theta, m$ - model averaging
  • frequentist
    • can’t use MLE - will always prefer more complex models
    • use some criteria such as KL-divergence, AIC, cross-validationt